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ABSTRACT: We investigate quantum corrections in two-dimensional CPN~1 supersym-
metric nonlinear sigma model on noncommutative superspace. We show that this model is
renormalizable, the N'=2 SUSY sector is not affected by the C-deformation and that the
non(anti)commutativity parameter C? receives infinite renormalization at one-loop order.
And it is the renormalizability of the model at one-loop order.
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1. Introduction

One recent development in quantum field theories is the emergence of new classes of field
theories with some novel properrties from the study of string theory. String theory with
some of its field components having classical values on D-brane gives rise to new field
theories in its low energy limits. In particular, N'=1 noncommutative (NC) superspace
considered some time ago [fl] can be derived in this way from superstring theory with
self-dual graviphoton background values [f—f].

In four dimensions, the non(anti)commutativity is introduced to N'=1 superspace by
deforming the anticommuting relations for superspace coordinates 6%, 0% as [H]

(67,091 = 0B, {6°,6°) = {6%,6°} = 0. (1.1)

The noncommutativity (NC) parameter C®? is related to the (constant) graviphton back-
ground value. Due to the non-zero anticommutator of 8%, the field theory on the super-
space keeps only a half of supersymmetry (SUSY), A'=1/2 SUSY, some times also called
deformed SUSY. Because 6 and 6 are treated independently, the field theory on N'=1/2
superspace can be defined only in Eucledian space and such field theories lack Hermiticity.

N=1/2 SUSY field theories can be dealt with straightforwardly by modifying the
product of superfields. The product is Weyl-ordered in 6 by using the Moyal product,
which is defined by

f*xg= fexp (—%Caﬁaaé)ﬁ) g, (1.2)

where @), is the supercharge.



The Lagrangian of N'=1/2 SUSY field theories consists of two parts, the orginal N'=1
SUSY Lagrangian and the new terms containing C*? as a coupling constant. We refer to
the two parts as the non-deformed SUSY sector and the C-deformation sector, respectively.
The immediate question on N'=1/2 SUSY field theories in perturbation is whether they
are renormalizable, despite the fact that the new coupling constant C*? has a negative
dimension (in mass). One may further ask whether good ultraviolet (UV) properties of
field theories with (extended) SUSY are preserved after adding C-deformed terms. The first
question has been answered positively for A'=1/2 Wess-Zumino model [{-f] and N'=1/2
supersymmetric gauge theory [-[[3. The NC parameter C*? has been shown to receive
infinite renormaliation. Quantum corrections to the non-deformed SUSY sector of these
models are not affected by the C-deformation [[Ld, [L1].

N=2 CPN~! supersymmetric nonlinear sigma models (SNLSM) [[4, [LF] are a low-
energy effective theory of four-dimensional A'=1 super Yang-Mills theories. Two-dimen-
sional N=2 and N'=4 SNLSM have remarkably good UV properties beyond perturbative
renormalizability [[[6-[[9]. In non-perturbative aspects, two-dimensional SNLSM have in-
stantons, like super Yang-Mills theories.

Since the Kéahler potential of SNLSM is generally non-polynomial, the action of SNLSM
on noncommutative superspace has infinitely many terms [R0-RJ]. It is difficult to study
the properties of such models even in perturbation. Fortunately the action takes a simple
closed form in the case of CPN~1 SNLSM on NC superspace using the Kéhler quotient
)

The purpose of the present paper is to investigate one-loop quantum corrections in the
two-dimensional C PN ~! SNLSM on NC superspace. In particular, we are interested in the
loop effects on the non-deformed SUSY sector due to the new coupling C*? and vice versa.
We have found that the C-deformation term of this model receives a divergent correction
which is absorbed by the renormalization of the coupling constant A and the NC parameter

ceB,

2. 2D CPV-! SNLSM on NC superspace

CPN~1 SNLSM in d = 2 can be obtained from that in d = 4 by dimensional reduction
BF]. The same method can be used to obtain the CP¥~! SNLSM on NC superspace in

d=2 4.

We denote the scalar and fermion fields after solving the CPN~! constraints by ¢?,
@* and X%, ¥ (a =1,2,--- , N —1). The Lagrangian is written in terms of the component
fields as

N (2.1)
Ly = igabaw oG + )\%gabxﬂ "DuxX% + %Z’gaaiév"Dﬂxi

+4ARach(ﬂW“Xi)(ﬂmxi), 22)

ko= %gaEgcJ(CHXiXi - X (9,87 (08 (2.3)



Here Lg is the non-deformed part, namely, the usual SUSY CPY~! Lagrangian [[[4] [(5],
Lc is the new term due to superspace noncommutativity. x4, x® are the two components
of the 2D spinor x“. g,; is the Fubini-Study metric on CcCPN-1, I'}. and R ;.g are the
Christoffel symbol and the Riemann curvature tensor, respectively. D, x% is the covariant
derivative. They are given by

g = L2900 — Gay (2.4)
(1+ @p)?

& = g"Bhg.q, (2.5)

Dux% = 9uxt + The(0,")x % (2.6)

Ropeq = —9ae0:(97°03915) = Gus9ed + Guiadeb- (2.7)

2.1 Background field method and Ké&hler normal coodinates

We evaluate the quantum corrections in our model in perturbation in the coupling constants
X and C*P. This can be made by means of the background field method. The familiar
Riemann normal coordinates are not good for the present purpose, because they are not
holomorphic on a Kahler manifold. Instead we should use the expansion in terms of Kéahler
normal coordinates [R€], which are holomorphic coordinates. This expansion provides a
manifestly covariant background field method preserving the complex structure on CPN 1,
We denote the background field by ¢, the quantum field by ¢%, and the holomorphic
coordinates on the CPV~1 by £2. ¢, Ou®, 9ap, and R p.; are written in terms of Kahler

normal coordinates as

" — "+ 0%/ ), (2.8)

Burb/AE) = VADLE — ASOMPRY £E1+ O(E), 29)

90 (9 + 950/AE) = gy + ARyogt €' + O(E%), (2.10)
Rejei( + 050/2E)) = Rajoq + M (RopgiRane)f — RebgaRanef)E9€"

+O(&%). (2.11)

In the following computation of one-loop effects, we need the terms of second order in
the fluctuations &% of the Lagrangian (R.9), (2.3). They are given by

T
| _ - 1 .
+Roped (mwaﬂwbs%d — S0up" 0" e — §aucpaa“gocsbsd>
+iR g (oA DX 66 + X5 XS D€ Eh)
iR g (X0 A" DX €€ + X0 A x° DpgE”)
+9% (Ro@gaRaneyf — RepgiRaner) 626" O XD (X 1ux%), (2.12)

2 5~ =g 1 en —dmh =Fza
ﬁ(c) = {gabgcd<Du§bDu§d_ ) wP Ov dR??egfffg
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+9.40u P 0y P Rype 76T }eW(cﬂxixi — O x%). (2.13)

3. One-loop perturbative corrections

We begin by noting that all terms in the C-deformation part Lo contain y*x® and are
non-Hermitian. In perturbation, only the combination y®x? is contracted in the Wick’s
theorem; the combination x*x® is not contracted. Hence the C-deformed terms with y®x®
cannot appear as a part of internal lines. They can only appear as external lines. This
means that there appear no loop corrections due to the new term L to the non-deformed
part of the effective action. The same property holds for super Yang-Mills theories [I0, [L].

3.1 Non-deformed sector

Because of the absence of loop corrections due to Lo, the loop corrections to the non-
deformed SUSY sector in our model are the same as those in the ordinary model. In
particuler, the S-function of A is not affected by C-deformation. For later use we summarize
the previous result on the renormalization of the non-deformed SUSY sector [[q, [§]. We
use the dimensional regularization, setting e = 1—d/2, where d is the space-time dimension.
The divergent one-loop correction to the non-deformed sector is written as that to Lo.
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1 AN

= — n- .1
2¢ 21 LBoso (3 )

Here - (or --) over a pair of fields £*(z) mean that they are contracted. We have used the
relation which holds for C PN~

Ry = Nog. (3.2)

The bare quantities will be denoted by the suffix 0. g,;/Ao can be expressed in terms
of one-loop order renomalized quantities as

Jab _ z{& i<_ﬁ ) }
N P UN T2\ gga) T

= 26%(1_iﬂ)
S % 27 )’ (3.3)

where p is the scale parameter.

3.2 C-deformed sector

We now evaluate the loop corections to the other coupling constant C*?. There are two
graphs which give possibly divergent contributions to the C-deformed sector. They are



Figure 1: Divergent one-loop corections to the C-deformed sector. The solid internal lines stand
for the &-propagator, the dots denote background-dependent vertices, such as (@)

shown in Fig.1. Other one-loop graphs contributing to the C-deformed sector are finite. In
Fig.1 the external lines represent a set of background fields, such as

8u50.q€" 0,80, P CH Y LXS.. (3.4)
The loop graph 1.a involves two vertices, one containing D,E’DVEJ from ﬁ(c%) and

another containing £4¢¢ from £?

Boson*
2 1 Fey
Lo = — §Razacgf9us0b6“sod£“£c + (3.5)
2 i .
L8 = 4 0upeac™ (CUXIXG — CPXIXE)DLEDE + - (3.6)

The graph 1.a contributes to the effective action the following term.

55(6‘}) (-+1) x gaggcJRﬁkl—(?(’@580¢Z6“”DH§EDVEJ X g&k

() xew( I 4+ finite ), (3.7)

where I*" is given by

1 FeH fV
M= | dr | Pk ps—r—1s
/o / {2+ M2(x))?

~ Low, (3.8)

€

Here M?(z) does not contain k*. We note that I*” is symmetric in g, and hence
SLE ~ € I = 0. (3.9)
)

The loop graph 1.b involves a single vertex, the one containing 5@'57 from E(CQ .

L8 = (9 Rodiy + 9eilapiz)OuP 0@ ™ (CTNGXG — CPXUX)EE + -+
(3.10)

It’s contribution to the effective action is computed to be

) - S 5 0. c a ¢ % 2=
0L = (95 Reiiy + 9eaPasiy)OuF D@ e (CH NG — XX )EE



1N

= 5 5 Gab9ed + 90q9a8) 0u P’ 0, P (CT Y0NS — CPXX0). (3.11)

We thus have
Lo = ——[,C (3.12)
€
To summarize, at one-loop, only the loop graph of 1.b gives a divergent contribution

to the C-deformed sector. The result is proportional to L, and hence it can be eliminated
by the counter term. It assures the renormalizability of the model at one-loop order.

3.3 UV divergences in the C-deformed sector and renormalization

We decompose C*? into renormalization part and constant part by writing
0P = CP, (3.13)

The dimensionless coupling constant ~ receives renormalization and C? is set to constant,
in the Lagrangian (R.J). We introduce 7%¢ as

Tal;cti = ausbl;ayszgeﬂl/{éllx‘ixi — C’QQX(ch_} (314)

The counter term of L¢ is (L))o — Lo By using the renormalization result (B.3), we
have

1 AN
ﬁcct — (ﬁc)o _ ﬁc — )\ 7 gab gcd <1 ) Tabcd )\ gab gchabcd

AA 2 2 A\
{)\o’yo (1 - 2%2;—%) _ AW}%%‘?T“M
= {0 g2ay) e 515

It is added to cancel the infinity from the loop graph, which we have computed above.

Lo+ 0Lo = <A;—;Y° _ 1) <1 _ 2%2%)50

= 0. (3.16)
Thus the renormalization of « is fixed by the condition
)\0’70 = )\’)/ (317)

We have found that the NC parameter C*? (or «) is renormalized at one-loop order as

J0/7 = Oo/N) = (1= 2. (.19



3.4 (-functions

The ordinary 2D SUSY CP¥~! model has good UV properties. We now study the UV
properties of the deformed 2D SUSY CPN~! model, in particular its S-functions. The
[-function of the coupling constant A is obtained from eq.(B.3).

d N
By = M@A = —%AZ. (3.19)

For the purpose of perturbative computation we have defined the fields by setting

P X =V VX (3.20)
1+ Apw)dap — APas
95 = ( @) b : PaPp (3.21)
(1+ App)
L is then written as
Lo = M9ap9a(CTXEXE — CPXEXE) e (0,8°) (0,97, (3.22)

We take A\v instead of « as the new coupling constant. The g-function of Ay vanishes.

o)
Bry = u@(/\v) =0. (3.23)

We note that A = 0 is the UV fixed line of the theory in the A - v\ plane.
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